Mahalanobis Distance Based Approach for Anomaly Detection of Analog Filters Using Frequency Features and Parzen Window Density Estimation
نویسندگان
چکیده
Analog filters play a very important role in insuring the availability of electronic systems. Early detection of anomalies of analog filters can prevent the impending failures and enhance reliability. The complex architecture and the tolerances of multiple components make it very difficult to detect anomalies in analog filters. To address this concern, A Mahalanobis distance (MD) based anomaly detection method for analog filters is proposed in this paper. The conventional frequency features and the moment of frequency response are selected as the feature vector. Mahalanobis distance is used to transform the frequency feature vector to one dimensional MD data. The anomaly detection threshold is obtained based on probability density of the healthMD data sets which is estimated by Parzen window density estimation method. The efficiency of the proposed method has been verified by two case studies. In the case studies, a comprehensive indicator constructed by miss alarm and false alarm is used to obtain an optimal anomaly detection threshold. One class SVM (OCSVM) based anomaly detection method is used as a comparison with our approach. The results illustrate that: (1) the proposed frequency features can effectively clarify the degradation of analog filters; (2) the proposedMD based approach can detect anomalies in analog filters effectively at an early time stage. (3) the proposed MD based approach can detect anomalies in analog filters more accurately than OCSVM based method.
منابع مشابه
Nonparametric Spectral-Spatial Anomaly Detection
Due to abundant spectral information contained in the hyperspectral images, they are suitable data for anomalous targets detection. The use of spatial features in addition to spectral ones can improve the anomaly detection performance. An anomaly detector, called nonparametric spectral-spatial detector (NSSD), is proposed in this work which utilizes the benefits of spatial features and local st...
متن کاملStatistical Outlier Detection in Large Multivariate Datasets
This work focuses on detecting outliers within large and very large datasets using a computationally efficient procedure. The algorithm uses Tukey’s biweight function applied on the dataset to filter out the effects of extreme values for obtaining appropriate location and scale estimates. Robust Mahalanobis distances for all data points are calculated using these location and scale estimates. A...
متن کاملComparing performance of k-Nearest Neighbors, Parzen Windows and SVM Machine Learning Classifiers on QSAR Biodegradation Data across Multiple Dimensions
Machine learning and pattern recognition are the most popular artificial intelligence techniques to model systems, those can learn from data. These techniques efficiently help in Classification, Regression, Clustering and Anomaly detection etc. k-Nearest Neighbors, Parzen Windows and Support Vector Machine (SVM) are some of the widely used Machine Learning classification techniques. This projec...
متن کاملA Statistical Approach to Industrial Anomaly Detection
In this paper, we present a statistical approach to anomaly detection and monitoring through image analysis, and its application in non-destructive evaluation. A non-parametric statistical model is created by Parzen window density estimation at each pixel location, based on the observations of a number of defect-free images and the derived low level features. A test image is compared against th...
متن کاملTracking Objects in Color Image Sequences: Application to Football Images
In this paper, we present a comparative study between two computer vision systems for objects recognition and tracking, these algorithms describe two different approach based on regions constituted by a set of pixels which parameterized objects in shot sequences. For the image segmentation and objects detection, the FCM technique is used, the overlapping between cluster's distribution is minimi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Electronic Testing
دوره 32 شماره
صفحات -
تاریخ انتشار 2016